Classifying Model-View-Controller Software Applications Using Self-Organizing Maps

نویسندگان

چکیده

The new era of information and the needs our society require continuous change in software technology. Changes are produced very quickly systems evolving at same velocity, which implies that decision-making process architectures should be (semi-)automated to satisfy changing avoid wrong decisions. This issue is critical since suboptimal architecture design decisions may lead high cost poor quality. Therefore, systematic mechanisms help architects during required. Architectural patterns one most important features applications, but pattern can implemented different ways, leaving results When an application requires evolve, knowledge extracted from similar applications useful for driving decisions, quality implementations reproduced improve specific attributes. clustering methods especially suitable classifying implementations. In this paper, we apply a novel unsupervised technique, based on well-known artificial neural network model Self-Organizing Maps, classify Model-View-Controller (MVC) point view. Software analyzed by 24 metrics organized into categories Count/Size, Maintainability, Duplications, Complexity, Design Quality. main goal work twofold: identify establish similarity MVC without architect bias, means Maps metrics. To end, performs exploratory study conducting two analyses with dataset 87 Java characterized attributes describe technology dimension application. stated findings provide base applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

Classifying Amharic News Text Using Self-Organizing Maps

The paper addresses using artificial neural networks for classification of Amharic news items. Amharic is the language for countrywide communication in Ethiopia and has its own writing system containing extensive systematic redundancy. It is quite dialectally diversified and probably representative of the languages of a continent that so far has received little attention within the language pro...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Green Product Consumers Segmentation Using Self-Organizing Maps in Iran

This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...

متن کامل

Discovering Common Features in Software Code Using Self-Organizing Maps

The self-organizing map is discussed as an unsupervised clustering method. Its ability to form clusters indicates similar features in a data set. Based on this property, it is demonstrated that a self-organizing map is capable of identifying features within software code by grouping procedures with similar properties together. This allows us to identify potential objects, abstract data types or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3066348